

Philistine

A Python package for Phillip’s helper and utility functions, especially for EEG and statistics.

Status

[image: pipeline status] [https://gitlab.com/palday/philistine/commits/master] [image: coverage report] [https://gitlab.com/palday/philistine/commits/master] [image: documentation status] [https://philistine.readthedocs.io/en/latest/?badge=latest] [image: license] [https://opensource.org/licenses/BSD-3-Clause] [image: pypi] [https://pypi.org/project/philistine/]

Overview

Philistine is a collection of hopefully useful functions in Python for statistics and analysis of EEG data using existing packages in the Python ecosystem. It is not intended to be a standalone package, but rather a convenient way to distribute manipulations that I (Phillip) find useful in my own work.

This is very much aa hobby project developed in my free time (in a language I don’t use much anymore) and the API is subject to change in a rather volatile fashion as improvements, corrections, etc. are made. The idea is provide a convenient way to redistribute functions that I (Phillip) find useful. The hope is that many of these functions are eventually integrated into packages such as MNE [https://mne-tools.github.io], bambi [https://github.com/bambinos/bambi], etc. At that point, the functions will be changed into thin wrappers for those other packages, deprecated and eventually removed.

The BV-writer functionality will likely be removed in a future release.
MNE now has an export module, which takes advantage of [pybv](https://pypi.org/project/pybv/), which in turn took the good parts of the writer here and added some active maintenance.

Installation

Philistine requires a working Python interpreter. As of version 0.2.0, this must be at least Python 3.7 for compatibility with MNE 1.3.

Assuming a standard Python environment is installed on your machine (including pip), Philistine itself can be installed in one line using pip:

python -m pip install --user --upgrade philistine

Alternatively, if you want the bleeding edge version of the package, you can install from GitLab:

python -m pip install --user --upgrade git+https://gitlab.com/palday/philistine.git

Dependencies should be handled automatically by pip.

Development

The primary hosting for this project is on GitLab [https://gitlab.com/palday/philistine], and issues should be raised there. A GitHub mirror [https://github.com/palday/philistine/] is provided for convenience and redundancy. Pull requests can be made on either site.

Site Navigation

	API Reference

	Index

	Search Page

philistine API reference

This is a complete reference for everything you get when you import
philistine.

MNE-Python related functionality

	philistine.mne.savgol_iaf(raw[, picks, …])

	Estimate individual alpha frequency (IAF).

	philistine.mne.attenuation_iaf(raws[, …])

	Estimate individual alpha frequency (IAF).

	philistine.mne.abs_threshold(epochs, threshold)

	Compute mask for dropping epochs based on absolute voltage threshold.

	philistine.mne.retrieve(epochs, windows[, …])

	Retrieve summarized epoch data for further statistical analysis.

	philistine.mne.write_raw_brainvision(raw, …)

	Write raw data to BrainVision format.

General purpose utilities

	philistine.invert_dict(d)

	Return an ‘inverted’ dictionary, swapping keys against values.

philistine.mne.savgol_iaf

	
philistine.mne.savgol_iaf(raw, picks=None, fmin=None, fmax=None, resolution=0.25, average=True, ax=None, window_length=11, polyorder=5, pink_max_r2=0.9)

	Estimate individual alpha frequency (IAF).

	Parameters

	
	raw (instance of Raw) – The raw data to do these estimations on.

	picks (array-like of int | None) – List of channels to use.

	fmin (int | None) – Lower bound of alpha frequency band. If None, it will be
empirically estimated using a polynomial fitting method to
determine the edges of the central parabolic peak density,
with assumed center of 10 Hz.

	fmax (int | None) – Upper bound of alpha frequency band. If None, it will be
empirically estimated using a polynomial fitting method to
determine the edges of the central parabolic peak density,
with assumed center of 10 Hz.

	resolution (float) – The resolution in the frequency domain for calculating the PSD.

	average (bool) – Whether to average the PSD estimates across channels or provide
a separate estimate for each channel. Currently, only True is
supported.

	ax (instance of matplotlib Axes | None | False) – Axes to plot PSD analysis into. If None, axes will be created
(and plot not shown by default). If False, no plotting will be done.

	window_length (int) – Window length in samples to use for Savitzky-Golay smoothing of
PSD when estimating IAF.

	polyorder (int) – Polynomial order to use for Savitzky-Golay smoothing of
PSD when estimating IAF.

	pink_max_r2 (float) – Maximum R^2 allowed when comparing the PSD distribution to the
pink noise 1/f distribution on the range 1 to 30 Hz.
If this threshold is exceeded, then IAF is assumed unclear and
None is returned for both PAF and CoG.

	Returns

	IafEst – Named tuple with fields for the peak alpha frequency (PAF),
alpha center of gravity (CoG), and the bounds of the alpha band
(as a tuple).

	Return type

	instance of collections.namedtuple called IAFEstimate

Notes

Based on method developed by
Andrew Corcoran [https://zenodo.org/badge/latestdoi/80904585].
In addition to appropriate software citation (Zenodo DOI or
git commit), please cite:

Corcoran, A. W., Alday, P. M., Schlesewsky, M., &
Bornkessel-Schlesewsky, I. (2018). Toward a reliable, automated method
of individual alpha frequency (IAF) quantification. Psychophysiology,
e13064. doi:10.1111/psyp.13064

philistine.mne.attenuation_iaf

	
philistine.mne.attenuation_iaf(raws, picks=None, fmin=None, fmax=None, resolution=0.25, average=True, ax=None, savgol=False, window_length=11, polyorder=5, flat_max_r=0.98)

	Estimate individual alpha frequency (IAF).

	Parameters

	
	raws (list-like of Raw) – Two Raws to calculate IAF from difference (attenuation) in PSD from.

	picks (array-like of int | None) – List of channels to use.

	fmin (int | None) – Lower bound of alpha frequency band. If None, it will be
empirically estimated using a polynomial fitting method to
determine the edges of the central parabolic peak density,
with assumed center of 10 Hz.

	fmax (int | None) – Upper bound of alpha frequency band. If None, it will be
empirically estimated using a polynomial fitting method to
determine the edges of the central parabolic peak density,
with assumed center of 10 Hz.

	resolution (float) – The resolution in the frequency domain for calculating the PSD.

	average (bool) – Whether to average the PSD estimates across channels or provide
a separate estimate for each channel. Currently, only True is
supported.

	ax (instance of matplotlib Axes | None | False) – Axes to plot PSD analysis into. If None, axes will be created
(and plot not shown by default). If False, no plotting will be done.

	savgol (False | 'each' | 'diff') – Use Savitzky-Golay filtering to smooth PSD estimates – either applied
to either each PSD estimate or to the difference (i.e. the attenuation
estimate).

	window_length (int) – Window length in samples to use for Savitzky-Golay smoothing of
PSD when estimating IAF.

	polyorder (int) – Polynomial order to use for Savitzky-Golay smoothing of
PSD when estimating IAF.

	flat_max_r (float) – Maximum (Pearson) correlation allowed when comparing the raw PSD
distributions to each other in the range 1 to 30 Hz.
If this threshold is exceeded, then IAF is assumed unclear and
None is returned for both PAF and CoG. Note that the sign of the
coefficient is ignored.

	Returns

	IafEst – Named tuple with fields for the peak alpha frequency (PAF),
alpha center of gravity (CoG), and the bounds of the alpha band
(as a tuple).

	Return type

	instance of collections.namedtuple called IAFEstimate

Notes

Based on method developed by
Andrew Corcoran [https://zenodo.org/badge/latestdoi/80904585].
In addition to appropriate software citation (Zenodo DOI or
git commit), please cite:

Corcoran, A. W., Alday, P. M., Schlesewsky, M., &
Bornkessel-Schlesewsky, I. (2018). Toward a reliable, automated method
of individual alpha frequency (IAF) quantification. Psychophysiology,
e13064. doi:10.1111/psyp.13064

philistine.mne.abs_threshold

	
philistine.mne.abs_threshold(epochs, threshold, eeg=True, eog=False, misc=False, stim=False)

	Compute mask for dropping epochs based on absolute voltage threshold.

	Parameters

	
	epochs (instance of Epochs) – The epoched data to do threshold rejection on.

	threshold (float) – The absolute threshold (in volts) to reject at.

	eeg (bool) – If True include EEG channels in thresholding procedure.

	eog (bool) – If True include EOG channels in thresholding procedure.

	misc (bool) – If True include miscellaneous channels in thresholding procedure.

	stim (bool) – If True include stimulus channels in thresholding procedure.

	Returns

	rej – Boolean mask for whether or not the epochs exceeded the rejection
threshold at any time point for any channel.

	Return type

	instance of ndarray

Notes

More precise selection of channels can be performed by passing a
‘reduced’ Epochs instance from the various picks methods.

philistine.mne.retrieve

	
philistine.mne.retrieve(epochs, windows, items=None, summary_fnc={'mean': <function mean>}, **kwargs)

	Retrieve summarized epoch data for further statistical analysis.

	Parameters

	
	epochs (instance of Epochs) – The epoched data to extract windowed summary statistics from.

	windows (dict of tuples) – Named tuples defining time windows for extraction (relative to
epoch-locking event). Units are dependent on the keyword argument
scale_time. Default is milliseconds.

	summary_fnc (dict of functions) – Functions to apply to generate summary statistics in each time
window. The keys serve as column names.

	items (ndarray | None) – Items corresponding to the individual epoch / trials (for
e.g. repeated measure designs). Shape should be (n_epochs,). If
None (default), then item numbers will not be included in the
generated data frame.

	kwargs – Keyword arguments to pass to Epochs.to_data_frame. Particularly
relevant are scalings and scale_time.

	Returns

	dat – Long-format data frame of summarized data

	Return type

	instance of pandas.DataFrame

philistine.mne.write_raw_brainvision

	
philistine.mne.write_raw_brainvision(raw, vhdr_fname, events=True)

	Write raw data to BrainVision format.

	Parameters

	
	raw (instance of Raw) – The raw data to do these estimations on.

	vhdr_fname (str) – Path to the EEG header file.

	events (boolean or ndarray) – If ndarry, events to write in marker file. Otherwise, boolean indicator
to extract and write events from raw.

Notes

The BrainVision format supports by-channel filter and measurement
information and moreover distinguishes between hardware and software
filters. MNE does neither. Currently, filter information is not exported.

Moreover BrainVision also allows for more complex trigger codes than MNE’s
simple integers, e.g. distinguishing on supported hardware between stimulus
codes (prefixed by an S) and responses codes (prefixed by an R). MNE’s
numeric events are all treated as ‘stimulus markers’ and prefixed by an S
on output.

Note however that only channels of type ‘eeg’,’eog’, ‘meg’ and ‘misc’ are
exported. This follows from the observation that BrainVision recordings
produced by BrainProducts devices generally only contain EEG and a few
auxiliary channels. The stimulus channel is not exported as channel data,
but, in line with BrainVision convention, the events array can be exported
to the vmrk file. Channels marked as bad are also not exported, in line
with MNE’s default behavior of generally ignoring bad channels. As the
current MNE readers do not do much with the channel-level annotations in
the vhdr file, it is not really desireable to depend on encoding
channel-type or “goodness” there. As such any information related to
channel-type or badness is lost upon export.

If you really want to export unsupported
datatypes or bad channels, then create a copy, mark everything as good and
of type ‘eeg’, and export. Be aware that the metadata will have to be
corrected the next time the data is read. Other options are to use the
private member functions directly that write each of the constituent files
(understanding that their API is not guaranteed to be stable) or use the
pybv library.

In other words, a round trip import-export is a lossy operation in terms of
metadata. The actual EEG recording should be losslessly preserved within
the realm of floating point precision and the constraints above.

philistine.invert_dict

	
philistine.invert_dict(d)

	Return an ‘inverted’ dictionary, swapping keys against values.

	Parameters

	d (dict-like) – The dictionary to invert

	Returns

	inv_d – The inverted dictionary.

	Return type

	dict()

Notes

If the key-mapping is not one-to-one, then the dictionary is not
invertible and a ValueError is thrown.

Index

 A
 | I
 | R
 | S
 | W

A

 	
 	abs_threshold() (in module philistine.mne)

 	
 	attenuation_iaf() (in module philistine.mne)

I

 	
 	invert_dict() (in module philistine)

R

 	
 	retrieve() (in module philistine.mne)

S

 	
 	savgol_iaf() (in module philistine.mne)

W

 	
 	write_raw_brainvision() (in module philistine.mne)

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Philistine

_static/up.png

